Robotics can play a significant role in the rehabilitation of patients with spasticity by improving their early diagnosis and reducing the costs associated with care. Spasticity is a muscle control disorder characterized by an increase in muscle tone with exaggerated stretch reflexes, as one component of the upper motor neuron syndrome. Furthermore, spasticity is present in other pathologies, such as cerebral palsy, spina bifida, brain stroke among others. This video shows the ongoing research on developing a platform for the modelling and the assessment of spasticity using collaborative robots as clinical tool. Our aim is to develop methods for non-invasive biomechanical modelling of upper limbs joints using 7-DOF Rosen Kinematics [1], mixed with a non-linear state of Hills force-velocity relation [2], improved by introducing new parameters such as rigidity, viscoelasticity, extensibility and thixotropy. After a learning phase performed by the therapist, the robot replicates the trajectories required to perform the assessment. The video also describes the detailed analysis of passive movement response (force/torque and position/velocity)of the limb. These parameters will be used to determine the degree of spasticity of patients in a fast and objective manner, while simultaneously developing new clinical scales, such as a modified version of Ashworth [3].