Evolutionary Indirect Approach to Solving Trajectory Planning Problem for Industrial Robots Operating in Workspaces with Obstacles
European Journal of Mechanics - A/Solids
Vol 42
First page 210
Last page 218

In this paper, an indirect method for trajectory planning for industrial robots has been addressed using an evolutionary algorithm. The algorithm is divided into three stages: (1) The acquisition of Adjacent Configurations (AC) for Path Planning subjected to kinematics, geometric and obstacle avoidance constraints. (2) The acquisition of a collision-free path between initial and goal robot configurations. This path consists of a set of ACs, and (3) The acquisition of a temporal history of the evolution for the robot joint coordinates, by minimizing the required time subjected to actuator limits. This algorithm has been evaluated by comparing the results with the direct procedures proposed by Rubio articles in 2009 and 2010.