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Abstract. In this paper we describe a new nonlinear estimator for filtering sys-
tems with nonlinear process and observation models, based on the optimization
with RGO (Restricted Genetic Optimization). Simulation results are used to com-
pare the performance of this method with EKF (Extended Kalman Filter), IEKF
(Iterated Extended Kalman Filter), SNF (Second-order Nonlinear Filter), SIF
(Single-stage Iterated Filter) and MSF (Monte-Carlo Simulation Filter) in the
presence of diferents levels of noise.

1 Introduction

Whenever the state of a system have to be estimated from noisy sensor information,
some kind of state estimator is employed to fuse together the data from different sensors
to produce an accurate estimate of the true system state. If the system dynamics and the
observation model are linear, then the minimum mean square estimate can be computed
using theKalman Filter. In the non-linear case the filtering problem in the state space
is given by

x(k) = g(k, x(k − 1), ε(k)), (1)

z(k) = h(k, x(k), η(k)), (2)

whereε(k) andη(k) are the disturbances, that are supposed to be independently
distributed random vectors:(

ε(k)

η(k)

)
∼

((
0
0

)
,

(
Q(k) 0

0 R(k)

))
. (3)

The optimal estimation implies the description of the conditional probability density

x̂M MSE(k|k) = E(x(k)|Zk) =

∫
x(k)p(x(k)|Zk)dx . (4)

Unfortunately, this description needs an infinite number of parameters. For this reason,
a number of suboptimal approachs have been proposed that use analitic aproximations
of the probability distributions, the transition states equation or the measure equation.
There are other methods, such as Monte-Carlo method, which need thousands of points
in order to aproximate the conditional probability density. In aplications with many
dimensions, these methods are not practical. For this reason methods with a reasonable
number of operations are needed, such as the filters estudied in this work.



2 The Filtering Problem

The problem is to find an estimation of the state x(k) of the system of interest, with a
non-linear discrete dynamics given by

x(k) = g(k, x(k − 1), ε(k)) . (5)

whereg is the state function model, x(k) is the state of the system at time k andε(k) is
the process noise.

The only information available of the system is the noisy observation given by the
nonlinear measure equation

z(k) = h(k, x(k), η(k)) . (6)

wherez(k) is the observation vector,h is the observation model that transforms the
state space into the observation space andη(k) is the measurement noise. The MMSE
estimate coincides with the conditional mean. Letx̂(i | j ) = E[x(i )|Z j ] with Z j

=

{z(1), z(2), ..., z( j )}T . The estimated covariance isPxx(i | j ) = E[{x(i )−x̂(i | j )}{x(i )−
x̂(i | j )}T

|Z j ] . These equations are difficult to evaluate in practice. For this reason the
recursive estimators are employed . In the linear case with additive gaussian noise the
MMSE is the Kalman Filter. The linear updated equations in this case are

x̂(k|k) = x̂(k|k − 1) + W(k)z̃(k), (7)

Pxx(k|k) = Pxx(k|k − 1) − W(k)Pνν(k|k − 1)WT (k) . (8)

The vector̃z(k) is called the innovation, which is the difference between the observation
and the prediction:

z̃(k) = z(k) − ẑ(k|k − 1) . (9)

The covariance of this quantity is

Pνν(k|k − 1) = Pzz(k|k − 1) + R(k), (10)

andW(k) is the Kalman gain and its value is

W(k) = Pxz(k|k − 1)P−1
zz (k|k − 1) . (11)

3 Traditional Nonlinear Filters

3.1 EKF and SNF

The Extended Kalman filter is similar to a linearized Kalman Filter , with the exception
that the linearization is performed on the estimated trajectory instead of a previously
calculated nominal trajectory. For that reason, the functionsg(k, x(k − 1), ε(k)) and
h(k, x(k), η(k)) are expanded in Taylor series aroundx̂(k|k) with terms up to first or
second order to yield the EKF or SNF respectively. The expansion with second order
terms of the transition equation is:



x(k) = g(k, x(k − 1), ε(k)) ' g(k, x̂(k|k − 1), 0)

+gx(k, x(k − 1), ε(k))(x(k − 1) − x̂(k − 1|k − 1)) + gε(k, x(k − 1), ε(k))ε(k)

+
1
2

n∑
j =1

ej (x(k − 1) − x̂(k − 1|k − 1))′g j
xx(k, x(k − 1), ε(k))(x(k − 1) − x̂(k − 1|k − 1))

+
1
2

n∑
j =1

ej ε
′(k)g j

εε(k, x(k − 1), ε(k))ε(k)

+

n∑
j =1

ej (x(k − 1) − x̂(k − 1|k − 1))′g j
xε(k, x(k − 1), ε(k))ε(k) .

(12)
and the expansion with second order terms of the measure equation is:

z(k) = h(k, x(k), η(k) ' h(k, x̂(k|k − 1), 0)

+hx(k, x(k − 1), η(k))(x(k − 1) − x̂(k − 1|k − 1)) + hη(k, x(k − 1), η(k))η(k)

+
1
2

n∑
j =1

ej (x(k − 1) − x̂(k − 1|k − 1))′h j
xx(k, x(k − 1), η(k))(x(k − 1) − x̂(k − 1|k − 1))

+
1
2

n∑
j =1

ej η
′(k)h j

ηη(k, x(k − 1), η(k))η(k)

+

n∑
j =1

ej (x(k − 1) − x̂(k − 1|k − 1))′h j
xη(k, x(k − 1), η(k))η(k) .

(13)
whereej is the j th Cartesian basis vector.

3.2 IEKF

The measurement prediction, up to first order, isẑ(k|k−1) = h(k, x̂(k|k−1). There are
errors prediction errors in usinĝx(k|k − 1) for x(k). Other additional errors are due to
measurement nonlinearity. Its possible to alleviate these errors if the updated state is not
computed as an approximate conditional mean, but a maximum a posteriori estimate.

The conditional probability density function, PDF, ofx(k) given Zk, if all the ran-
dom variables are Gaussian, is

p(x(k)|Zk) = p(x(k)|z(k), Zk−1)

=
1
c p(z(k)|x(k))p(x(k|Zk−1))

=
1
cN (z(k); h(k, x(k)), R(k)) N (x(k); x̂(k|k − 1), P(k|k − 1)) .

(14)

Maximizig this function is equivalent to minimizing the following

V(x(k)) =
1
2(z(k) − h(k, x(k)))′R(k)−1(z(k) − h(k, x(k)))

+
1
2(x(k) − x̂(k|k − 1))′(P(k|k − 1)−1(x(k) − x̂(k|k − 1)) .

(15)



The Iterated Extended Kalman Filter method (IEKF) uses a Newton-Raphson algo-
rithm to estimatêx(k|k). ExpandingV in a Taylor series up to second order about the
i-th estimate of x(k) results in:

V = V i
+ V i ′

x (x − xi ) +
1

2
(x − xi )′V i

xx(x − xi ) . (16)

Setting the gradient to zero:

xi +1
= xi

− (V i
xx)

−1V i
x . (17)

This yields the IEKF equation:

x̂i (k|k) = x̂i −1(k|k) + Pi −1(k|k)H i −1(k)′R(k)−1
{z(k) − h(k, x̂i −1(k|k))}

−Pi −1(k|k)P(k|k − 1)−1(x̂i (k|k) − x̂(k|k − 1)),
(18)

with H i −1(k) = hx(k, x̂i (k|k)) .

3.3 SIF

This technique is concerned with maximizing thea posterior i probability density. In
the derivation of the EKF, the nominal trajectory is linearized about a nominal trajectory
determined bŷx(k − 1|k − 1)and a nominal statêx(k|k − 1). If the nominal trajectory
and state are not close to the true trajectory, the truncated expansions of the EKF would
represent poor approximations.

x̂i (k|k − 1) = gi (x̂(k|k) + gi
x(k, x(k|k − 1, ε(k))))(x̂(k − 1|k − 1) − x̂(k|k − 1),

Pi
xx(k|k − 1) = gi

x(k, x(k|k, ε(k))))Pi
xx(k|k − 1)gi

x(k, x(k|k − 1, ε(k))))′ + Q(k),

ẑi (k|k − 1) = hi (k, x(k|k − 1), η(k)),

Pi
zz(k) = Hui (k, x̂(k|k), x)Pi

xx(k, k − 1)(Hui (k, x(k|k), x))′ + R,

z̃i (k) = z(k) − ẑi (k|k − 1),

Wi (k) = Pi
xx(k, k − 1)hi

x(k, x̂(k|k), x)′ Pi
zz(k),

Pi
xx(k, k) = Pi

xx(k, k − 1) − Wi (k)Pzzi (k)Wi (k)′,

xi (k|k) = xi (k, k − 1) + Wi (k)z̃(k) .

(19)

3.4 MSF

Tanizaki and Mariano proposed an algorithm based on the Monte-Carlo stochastic sim-
ulations, where the normal random numbers are generated for the error termsε(k) and
η(k) and the state variablesx(k) andx(k − 1) more precisely. This approach is based
on the equations:

x(k) = g(k, x̂(k|k − 1), 0)

+gx(k, x(k − 1), ε(k))(x(k − 1) − x̂(k − 1|k − 1)),
(20)

and
z(k) = h(k, x̂(k|k − 1), 0)

+hx(k, x(k − 1), η(k))(x(k − 1) − x̂(k − 1|k − 1)) .
(21)



This algorithm is a combination of EKF and Monte-Carlo stochastic simulations.
The equations of the Kalman filter are approximated by random draws:

x̂(k|k − 1) =
1
n

∑n
i =1 x̂i (k|k − 1),

Pxx(k|k − 1) =
1
n

∑n
i =1(x̂i (k|k − 1) − x̂(k|k − 1))(x̂i (k|k − 1) − x̂(k|k − 1))′,

ẑ(k|k − 1) =
1
n

∑n
i =1 ẑi (k|k − 1),

Pzz(k|k − 1) =
1
n

∑n
i =1(ẑi (k|k − 1) − ẑ(k|k − 1))(ẑi (k|k − 1) − ẑ(k|k − 1))′,

Pxz(k|k − 1) =
1
n

∑n
i =1(ẑi (k|k − 1) − ẑ(k|k − 1))(x̂i (k|k − 1) − x̂(k|k − 1))′,

W(k) = Pxz(k|k − 1)′ Pzz(k|k − 1),

Pxx(k|k) = Pxx(k|k − 1) − W(k)Pzz(k|k − 1)W(k)′,

(22)
and

x̂(k|k) = x̂(k|k − 1) + W(k)(ẑi (k|k − 1) − ẑ(k|k − 1)), (23)

wherex̂i (k|k − 1) = g(k, x̂i (k − 1, k − 1), εi (k)), andẑi (k, k − 1) = h(k, x̂i (k, k −

1), ηi (k)) .

4 The New Filter

The genetic algorithm is a probabilistic process of search based on the natural selection
and the genetic laws. The populationJ = (J1,J2, ...,Jn) ∈ JN is modified according
to the natural evolutionary process: after initialization, selectionω : JN

−→ JN , cross
χ : JN

−→ JN , and mutation4 : JN
−→ JN are executed recursively in a loop.

Each run of the loop is called agenerationandJ denotes the population at generation
τ .

The selection operator is intended to improve the average quality of the popu-
lation by giving individuals of higher quality a higher probability to be copied into
the next generation. The selection therefore focuses the search on promising regions
in the search space. The quality of an individual is measured by a fitness function
f : J −→ IR, whereJ represents the space of all possible individuals.

The genetic algorithms are often used as a global optimization method of time in-
dependent functions, and usually executed off line. However, the natural selection is a
local or semi local process in which the species adapt themselves to the environment,
which is in turn time dependent (it is on line).

It is possible to adapt the method of genetic algorithms if the search is restricted
to a neighborhood of the previous estimation using as fitness function:f : B((̂k|k −

1), σ ) −→ IR, with σ = ‖P(k|k − 1)‖,

f (J) =
1

10−8 + V(x̂(k|k − 1))
(24)

and

V(x(k)) =
1
2(z(k) − h(k, x(k)))′R(k)−1(z(k) − h(k, x(k)))

+
1
2(x(k) − x̂(k|k − 1))′(P(k|k − 1)−1(x(k) − x̂(k|k − 1)) .

(25)



Fig. 1.Restricted Genetic Optimization flowchart1.

Therefore, the algorithm updates the estimations of the states and the covariance
matrix and the loop is repeated again, as illustrated in figure 1. The conditional PDF of
x(k) given Zk is given as

p(x(k)|Zk) = p(x(k)|z(k), Zk−1) =
1
c p(z(k)|x(k))p(x(k|Zk−1)) =
1
c N(z(k); h(k, x(k)), R(k))N(x(k); x̂(k|k − 1), P(k|k − 1)) .

(26)

Maximizing the above function is equivalent to calculating a maximum a posteriori
(MAP) estimate. This is also equivalent to minimizingV(x(k)) , i.e. maximizing the
fitness functionf (J).

The standard fitness function (i.e. divided by the sum of fitness) is an approximation
of the conditional density function

p(x(k)|Zk) =
p(z(k)|x(k))p(x(k)|Zk−1)∫
p(z(k)|x(k))p(x(k)|Zk−1)

. (27)

From the above it is clear that it is possible to calculate accurately the non linearities
of the functionsf andg, however introducing the hypothesis of Gaussian noise can not
be avoided.

To determine the radius of the zone of search we use the Mahalanobis distance

d = (x̂(k|k − 1) − x̂(k − 1|k − 1))′ P−1(k|k)(x̂(k|k − 1) − x̂(k − 1|k − 1)) (28)

that measures the uncertainty of the estimatex̂(k).
All this process can be applied to the Extended Kalman Filter (Restricted Ge-

netic Optimization Filter, RGOF) or a Second-order Nonlinear Filter (Second-order
Restricted Genetic Optimization Filter, SRGOF).



5 Comparison of the Nonlinear Filters

A comparison of the nonlinear filters is examined by Monte-Carlo simulations. One set
of datax(k) andz(k) are artificially simulated and the estimatex̂(k) is compared with
x(k). and the BIAS and the RMSE between the estimatedx̂(k) and the simulated one
x(k) are computed for each timek. This procedure is performed 6000 times (30 runs of
200 points each).

Fig. 2.Typical executions for the model 5 with EKF and SRGOF for level of noise‖ε‖ = ‖η‖ =

1.0

To compare the various estimation methods we consider the five well-known models
in ascending order of nonlinearity and with three different levels of noise. In all cases
ε(k) andη(k) are assumed to be normally distributed as(

ε(k)

η(k)

)
∼ N

((
0
0

)
,

(
C 0
0 C

))
, (29)

whereC is a constant and the initial valuex(0) is distributed as a normal random vari-
able.

The first model is linear:{
x(k) = x(k − 1) + ε(k)

z(k) = x(k) + η(k) .
(30)

The second one is the Logistic Model:{
x(k) =

exp(x(k−1)
exp(x(k−1))+exp(ε(k))

z(k) =
exp(x(k))

exp(x(k))+exp(η(k))
.

(31)

The third one is the ARCH model:{
x(k) = (1 − b + b(x(k − 1))2)1/2

+ η(k)

z(k) = x(k) + ε(k) .
(32)

The fourth one is the Nonstationary Growth Model given by Kitagawa (1987) and
Carlin et al. (1992).



{
x(k) = 0.5x(k − 1) +

25x(k−1)

1+x2(k−1)
+ 8cos(1.2(t − 1)) + ε(k)

z(k) =
x2(k)

2 0 + η(k) .
(33)

The last one correspond to the Tracking, with an angle-only sensor given by Bar-
Shalom and Fortmann (1988)

 x(k) =

(
1 1
0 1

)
x(k − 1) + ε(k)

z(k) = atan
(

20
(x(1,k)−xp(k))

)
+ η(k) .

(34)

Table 1. Comparison of BIAS and RMSE for level of noise‖ε‖ = ‖η‖ = 0.1. Each number is
the mean of thirty runs of two hundred points each.

Model 1 Model 2 Model 3 Model 4 Model 5
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

EKF -0.2062 0.9616 0.0058 0.0876 -0.1275 0.9162 0.7118 10.9863 -0.2342 1.1963
IEKF -0.7654 2.0934 0.0250 0.0822 -1.2593 2.1868 0.4796 10.8942 -0.2488 1.0293
SNF -0.2063 0.9638 0.0109 0.0536 -0.1210 0.8812 0.4796 10.8942 -0.4361 0.9003
SIF 0.1955 1.9693 8.5E-05 0.0690 -0.1812 1.0947 0.5861 13.1817 -0.3238 0.8980
MSF -4.9743 36.5653 0.0057 0.0786 -0.1397 0.8718 0.4487 11.3058 -0.2453 0.8828
RGOF -0.1889 0.9515 0.0076 0.0532 -0.1142 0.8695 0.2688 10.3893 0.2411 1.1523
SRGOF 0.6469 1.3145 0.0078 0.0543 -0.1198 0.8554 0.3893 10.1435 0.0938 0.8511

Table 2. Comparison of BIAS and RMSE for level of noise‖ε‖ = ‖η‖ = 0.5. Each number is
the mean of thirty runs of two hundred points each.

Model 1 Model 2 Model 3 Model 4 Model 5
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

EKF -1.9802 4.996 0.2251 1.5537 -0.1691 0.8632 0.2727 14.7955 0.1648 5.5196
IEKF -6.7135 10.068 0.2233 1.5561 -0.7962 1.7991 0.1858 14.7742 -0.1300 5.0794
SNF -0.7908 4.354 0.2275 1.5546 -0.1250 0.8463 0.1858 14.7742 -0.0797 4.6296
SIF 0.4687 8.767 0.2269 1.5494 -0.1911 1.0864 0.8650 17.9635 0.1989 4.4094
MSF -59.0465 154.528 0.2236 1.5540 -0.0628 0.8523 0.5375 14.8041 -0.0202 5.1212
RGOF -0.8040 3.847 0.2209 1.5525 -0.1453 0.8573 0.4761 10.3697 0.3438 5.9636
SRGOF -1.1171 4.2704 0.2055 1.5063 -0.1603 0.8611 -1.2549 6.0052 -1.0691 4.8815



Table 3. Comparison of BIAS and RMSE for level of noise‖ε‖ = ‖η‖ = 1.0. Each number is
the mean of thirty runs of two hundred points each.

Model 1 Model 2 Model 3 Model 4 Model 5
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

EKF -1.0107 4.8071 0.0811 0.2457 -0.1275 0.9162 0.28454 14.5453 0.2183 11.0601
IEKF -4.0117 9.7702 0.1628 0.2791 -1.2593 2.1868 0.19430 14.5721 0.2765 9.7927
SNF -1.0325 4.8194 0.0859 0.2374 -0.1210 0.8812 0.19430 14.5721 0.0084 8.2852
SIF 0.9615 9.8352 0.0369 0.3276 -0.1812 1.0947 0.52118 15.6697 -1.6102 8.2340
MSF -17.5458 173.3967 0.0810 0.2417 -0.1397 0.8718 0.43729 14.6868 0.6963 8.1326
RGOF -2.3808 5.5300 0.0524 0.2286 -0.1146 0.8696 0.01695 10.1305 0.3160 10.2766
SRGOF -2.1398 5.9861 0.0529 0.2287 -0.1198 0.8554 0.11951 9.9886 1.7845 9.1265

6 Discussion

In this paper we have described a new method for filtering nonlinear systems. This
method uses Restricted Genetic Optimization to reduce the estimation error of the prior
EKF or SNF estimation.

Tables 1-3 summarize the results of the simulations of the five models with three
levels of noise:‖ε‖ = ‖η‖ = 0.1, 0.5 and 1.0. Each number shown in the tables
represents the mean of thirty runs of two hundred points each.

It is clear from the above results that the precision (based on the RMS Error criteria)
of the filter estimates of the SRGOF are certainly improved over the other algorithms,
especially in the noisier and more nonlinear situations. Judging from the criteria of
BIAS there are no big differences between the different methods, however some of the
algorithms (MSF, SIF and IEKF) are less robust in certain situations.

Finally, the most important charactheristic of the proposed SRGOF algorithm is its
robustness in the noisier and highly nonlinear situations which are the desired charac-
teristics of such filters.
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