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Abstract— A new solution to the Simultaneous Localization
and Modelling problem is presented. It is based on the stochastic
search of solutions in the state space to the global localization
problem by means of a differential evolution algorithm. A non
linear evolutive filter, called Evolutive Localization Filter (ELF),
searches stochastically along the state space for the best robot
pose estimate. The proposed SLAM algorithm operates in two
steps: in the first step the ELF filter is used at a local level
to re-localize the robot based on the robot odometry, the laser
scan at a given position and a local map where only a low
number of the last scans have been integrated. In a second
step the aligned laser measures together with the corrected
robot poses are use to detect when the robot is revisiting a
previously crossed area. Once a cycle is detected, the Evolutive
Localization Filter is used again to re-estimate the robot poses
in order to integrate the sensor measures in the global map
of the environment. The algorithm has been tested in different
environments to demonstrate the effectiveness, robustness and
computational efficiency of the proposed approach.

Index Terms— SLAM, Local Positioning Systems, Mobile
robots, Differential Evolution Algorithm

I. INTRODUCTION

Localization and map building are key components in

robot navigation and are required to successfully execute a

path generated by a global planner. Both problems are closely

linked, and learning maps required to solve simultaneously

both problems. These simultaneous problems are often re-

ferred as simultaneous localization and mapping(SLAM). In

the SLAM case, uncertainty in measures, uncertainty in robot

pose estimates and a partially learned map which contains

the residual errors unsolved at integration or re-localization

processes makes the SLAM problem complex.

The two main approaches to effectively solve the si-

multaneous localization and mapping problem have been

consolidates in the last decade. The first approach uses a

feature-based model of the environment and the extended

Kalman filter (EKF) to manage the associated uncertainty.

This approach is extremely compact, and its computational

cost has been considerably improved in the most recent work.

On the other hand, however, the linear nature of the basic

method requires linearization of the motion and perception

models which causes problems in the long term. Moreover,

the technique has difficulties modelling many environment

areas due to the limited set of feature models used.

The second group of solutions use particle filters to

obtain a solution to the SLAM problem. This group of
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solutions can use certainty grid map models or a feature

map to represent the environment [12], and the sequential

Monte Carlo methods to estimate the posterior probability

distribution functions. This approach has proved to be very

robust from a statistical point of view in the management of

the uncertainties present in the problem. Its disadvantage is

that the number of particles required increases the computa-

tional cost and the algorithm robustness is heavily dependent

on this because each particle has a statistical significance

associated with it.

In this work we present a new solution to the grid-based

SLAM problem based on the stochastic search of the best

pose estimate. This approach uses a differential evolution

method [9] to perturb the possible pose estimates contained

in a given set until the optimum is obtained. By properly

choosing the cost function, a maximum a posteriori estimate

is obtained. This method is applied at local level to re-

localize the robot and at global level to solve the data

association problem. The method proposed integrates sensor

information in the map only when cycles are detected and

the residual error are eliminated, avoiding a high number of

modifications in the map or the existence of multiple maps,

thus decreasing the computational cost compared to other

solutions.

Our approach has been validate on a set of data obtained

from our experiments and data extracted from the Radish

repository data. The results show the proposed method is

able to satisfactorily close environment cycles to generate

accurate metric maps.

II. STATE OF THE ART

The SLAM problem has been one of the most interest-

ing theoretical problems in mobile robotics since the 90’s

when the seminal work of Smith, Self and Cheeseman [8]

introduced the concept of a stochastic map to establish

uncertain spatial relationship between features detected in

the environment. The Kalman filter provides the mechanism

for integrating and updating the map. Julier and Uhlmann [3]

have shown important conclusions derived from the fact that

the linearization problem is structural and cannot be avoided.

Castellanos et al. have also shown [1] that linearization errors

produce inconsistency problems in the standard EKF solution

for SLAM.

A widely investigated aspect is the scaling properties

of the stochastic map solution to the SLAM problem.

The O(n2) complexity of the basic solution (where n is

the number of features in the map) has been a serious

bottleneck. Several researchers have developed techniques



to alleviate the computational burden: the sparse extended

information filters [11], the decoupled stochastic mapping

[4], the compressed filter [2], the sequential map joining [10]

and the constrained local submap filter [13] have improved

the scalability problem of the standard EKF-based version

the SLAM problem. However, the linearization problem and

the data association problem ambiguities are not completely

solved.

A second group of SLAM algorithms are based on the

occupancy grid mapping method. Grid-based techniques

are computationally expensive and have a larger memory

requirement than EKF-based SLAM methods. This group

of solutions uses the Rao-Blackwellized particle filters to

estimate the posterior probability distribution functions [5].

The main problem of this approach derives from the fact that

each particle of the filter represents a different map of the

environment. This requires the obtaining of as many maps

as particles being used in the filter at each algorithm step. A

second problem, common in Bayesian filters, is the difficulty

of estimating an adequate number of particles.

The advantage of our approach is twofold. First, the solu-

tion proposed builds only one global certainty grip map, thus

avoiding unnecessary operations. Second, the computational

efficiency of the method reduces the computational cost.

III. LOCALIZATION PROBLEM FORMULATION AND

SOLUTION.

From a Bayesian point of view, the localization problem

can be formulated as a probability density estimation prob-

lem where the robot seeks to estimate a posterior distribution

over the space of its poses conditioned on the available data.

The sensor data can be divided into two groups of data

Yt ≡ {z0:t, u1:t} where z0:t contains the perception sensor

measurements and u1:t contains the odometric information.

The recursive determination of the posterior probability

density can be computed in two steps:

• Measurement update. Applying the Bayes’s rule to the

last element of the measurement vector Yt and assuming

that the observation zt is conditionally independent of

the previous measurements given the state xt, yields

p(xt|Yt) =
p(zt|xt)p(xt|Yt−1)

p(zt|Yt−1)
(1)

where the denominator of 1 is obtained by marginaliza-

tion.

• Prediction. The effect of a time step over the state given

the observations up to time t is obtained by observing

that

p(xt+1|Yt) =
∫
�n

p(xt+1|xt, ut)p(xt|Yt)dxt (2)

where the assumption that the process xt is Markovian,

and then xt+1 is independent of Yt has been considered.

Each candidate parameter value in �n yields a value

of p(x|y), reflecting the posterior probability of the robot

pose given the data up to time t. This posterior needs to

be weighted according to a given criterion to determine an

estimate x̂ of the true pose value. Since the posterior prob-

ability distribution is multi-modal in the global localization

problem, the minimum mean-square estimate is inconvenient.

The localization algorithm used concentrates on obtaining the

better maximum a posteriori estimator,

x̂MAP = arg max
x

p(xt|Yt) (3)

This approach is less dependent on statistical assumptions,

has a simpler implementation, is robust from a statistical

point of view and has a computational cost lower than

Bayesian methods.

A. Localization as a MAP optimization problem

The localization problem is basically an optimization

problem, where the robot seeks to estimate the pose which

maximizes the a posteriori probability density.

x̂MAP
t = arg max

x

t∏
i=1

p(zi|xi)
t∏

i=1

p(xi|xi−1, ui−1)p(x0) (4)

The maximum a posteriori (MAP) estimate expression

can be easily stated as an optimization problem subject to

constraints (the motion and observation models of the robot).

B. Recursive formulation of the optimization problem

To implement the global localization algorithm in a robot,

a recursive formulation is required. The objective function

can be reformulated in a more convenient form:

f0(xt)=log pe(zt|xt) + log pv(xt|xt−1, ut−1)
+f0(xt−1) (5)

where pe and pv express the probability density functions

for the observation and motion noise, respectively, and the

MAP optimization problem can be written as

max
x

log pe(zt|xt) + log pv(xt|xt−1, ut−1) (6)

Then, by perturbing and searching new solutions to 6, we

obtain a recursive version of the MAP estimate.

IV. EVOLUTIVE LOCALIZATION FILTER ALGORITHM

The algorithm proposed to implement the evolutive local-

ization filter is based on the differential evolution method

proposed by Storn and Price [9] for global optimization

problems over continuous spaces, and Moreno [6] proposed

using it to solve the global localization problem by. It utilizes

N parameter vectors as a sub-optimal feasible solutions

set (population) for each generation t of the optimization

process.

A. Fitness function

According to the recursive optimization problem under

consideration, the natural choice for fitness function is the

objective function.

The observation probability pe(zt|xt) can be calculated

by predicting the observation value of the noise-free sensor

assuming the robot pose estimate is x̂t, the sensor relative

angle with respect to the robot axis is αi, and a given



environment model m, that in our case is estimated. Let

ẑt,i denote this ideal predicted measurement. Assuming the

measurement error et,i is Gaussian, centered at h(x̂t, αi) and

with a σe standard deviation, and conditional independence

between the individual measurements, the individual sensor

beam probabilities are integrated into a single probability

value:

pe(zt|x̂t)=
Ns∏
i=0

1
(2πσ2

e)1/2
e
−1/2

(zt,i−ẑt,i)
2

σ2
e (7)

where Ns is the number of sensor observations.

The second probability required to calculate the objective

function can be obtained in two steps: the prediction of the

noise free value of the robot pose assuming the robot pose

estimate is x̂t and the motion command at t is ut. Assuming

the motion error is Gaussian with covariance matrix P , then

this probability can be expressed as

pv(xt|xt−1, ut−1) =
1√|P |(2π)n

e−1/2(xt−x̂t)P
−1(xt−x̂t)

T

(8)

Introducing the expressions of pv and pe into the objective

function to optimize at iteration t, it can be reduced to

minimize the following function

f ′
0(xt) =

Ns∑
i=0

(zt,i − ẑt,i)2

2σ2
e

+
1
2
(xt − x̂t)P−1(xt − x̂t)T(9)

To predict the x̂t position, it is used the odometry infor-

mation and the best estimate of the previous iteration in the

algorithm. The odometry information is also used to move

the population set for one cycle to the following one.

B. Evolutive Localization Filter algorithm

The Evolutive Localization Filter (ELF) uses n dimen-

sional parameter vectors xk
i to point each candidate solution

i to the optimization problem at iteration k for a given time

step t. The filter will generate new set of parameter vectors

by perturbing an existing vector through the addition of one

or more weighted difference vectors to it. The perturbation

scheme generates a variation v according to the following

expression,

vk
i = xk

i + F (xk
r2

− xk
r3

) (10)

where xk
i is the parameter vector to be perturbed at iteration

k, xk
r2

and xk
r3

are parameter vectors chosen randomly from

the population and are different from running index i. The F
constant is an amplification factor that, in the experiments,

we assigned the value 0, 5.

To increase the diversity of the new generation of param-

eter vectors, a crossover mechanism is introduced. Denoted

by uk
i the new parameter vector with

uk
i,j =

{
vk

i,j if pk
i,j < δ

xk
i,jotherwise

(11)

where pk
i,j is a randomly chosen value from the interval [0, 1]

for each parameter j of the population member i at step k and

δ is the crossover probability and constitutes the crossover

control variable. The random values pk
i,j are made anew for

each trial vector i.

To decide whether or not vector uk
i should become a

member of generation i + 1, the new vector is compared

to xk
i . If vector uk

i yields a better value for the objective

fitness function than xk
i , it is replaced by uk

i for the new

generation; otherwise , the old value xk
i is retained for the

new generation.

In accordance with the previous ideas, the basic evolutive

localization filter algorithm consists of the following steps:

• Step 1: Initialization.
The initial set of solutions is calculated and the fit-

ness value associated with each of the points in the

state space is evaluated. If no information about initial

position is available, the initial set of pose solutions

is obtained by drawing the robot poses according to

a uniform probability distribution over the state space.

The initial robot pose estimate is fixed at an initial value.

• Step 2: Evolutive search.

– (a) For each element of the set of robot pose

solutions and according to the map, the expected

sensor observations are obtained. The expected

observations, the sensor observations, the robot

pose estimate and the robot pose element are used

to evaluate the loss function for each robot pose

element in the set of solutions.

– (b) A new generation of perturbed pose solutions

are generated. For each new solution, the expected

observations are calculated and the loss function

evaluated. If the new trial solution results in a

better loss function, this solution is selected for

the following iteration, otherwise the original is

maintained.

– (c) The crossover operator is applied to the resultant

population (solutions set).

– (d) The robot pose element of the set with lower

value of the loss function is marked as best robot

pose estimate. Go to step 2b a given number of

iterations.

• Step 3: Updating. The best pose of the population is

used as the updated state estimate and then used in

state transition model to predict the new state according

to the odometry information. Next, the displacement is

evaluated and the whole population is moved according

to this displacement. Then go to step 2.

V. DIFFERENTIAL EVOLUTION APPROACH TO SLAM

PROBLEM

In the simultaneous localization and mapping problem

case, the map needs to be estimated concurrently with the

pose to generate the expected measurements.

The most extended Bayesian formulation for the SLAM

problem is to estimate the posterior probability of the trajec-

tories, the map associated to it given the observations z1:t



and the odometry measurements u0:t:

p(x1:t,m
t
1|u0:t, z1:t) = p(mt

1|x0:t, z1:t)p(x1:t|z1:t, u0:t)
(12)

In this expression, the posterior over maps can be easily

computed when x0:t and z1:t are known by means of a

mapping process. Obtaining the posterior over the trajectories

is much more complex. At each iteration step the proba-

bility associated to augmented states, including a candidate

sequence and the map obtained by fusing the sensor data

with this sequence, is calculated. The map associated to a

given sequence is obtained by fusing the observed data up

to time t, z1:t according the estimated robot’s pose, x̂0:t. For

notation convenience we express it as m̂t
0.

The method proposed is quite different in that it exploits

the ELF algorithm capability to operate at local and global

level. The algorithm uses a two step approach. The first step

exploits the local data coherency idea to partially eliminate

the model inconsistency problem by using local models to

re-localize the robot. This local data coherency is used to

estimate the robot’s pose precisely but cannot completely

eliminate the pose error, and the residual remaining error is

accumulated over motion.

The second step of the algorithm exploits a different

concept to avoid the global inconsistency problem. The key

idea is to delay the sensor data integration in the global map
until the residual error is eliminated. The residual error can

be eliminated when a loop is detected and the global data

association done. Both ideas are combined in the solution

proposed to obtain an accurate global model based on the

application of the Evolutive Localization Filter at local and

global level.

A. Local data association

One way to eliminate the fast degradation of the estimation

process, and consequently of the mapping process, is to re-

localize the robot by using a local map which integrates

the last n observations perceived by the robot. This process

constitutes a local data association and the pose estimated is

referred to as x̂L
t .

x̂L
t ≈arg max

x
p(zt|xt, m̂

t−1
t−n)p(xt|xt−1, ut−1) (13)

This solution allows the robot to be re-localized efficiently

and avoids pose estimate degradation. In figures 1 and 2 the

re-alignment effect on the robot’s poses for the environment

used in test 1 (section VI) can be observed.

B. Global data association

According to the previous notation, we can also estimate

the robot’s pose by using the global map up to a given time

to obtain the maximum a posteriori estimate over the full

pose sequence. This we refer to as x̂G
t .

x̂G
t =arg max

x
p(zt|x0:t, m̂

t−1
0 )p(xt|xt−1, ut).

p(x0:t−1|Yt−1, m̂
k−1
0 ) (14)

The objective of the global data association is to estimate

the residual error accumulated in a loop. Figure 3 shows
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Fig. 1. Initial odometry poses for test environment 1
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Fig. 2. Re-aligned poses for test environment 1

the robot’s pose at the end of a detected cycle (test example

number 1) and the new pose estimate according the observed

data and the global map modelled up to this moment.

C. Residual error correction

Assuming the modelled global map up to a given time t
is m̂k−1

0 , a combined test based on the distance between xt

and points in the pose sequence, and the overlapping area

between sensor scanned area and the modelled global map

is used. The error is proportionally attributed to poses in the

loop, and a new re-localization is done for each robot’s pose

using the global map up to that moment instead of the local

environment.

Using these new estimates, to integrate observations in the

map, it is possible to maintain the robot properly localized

and to maintain a globally coherent representation of the

environment observed along the robot motion up to time t.

D. ELF based SLAM algorithm

According to previously explained ideas, the ELF grid map

based SLAM algorithm operates as follows: if the sensor data

has been obtained directly from a laser scanner and using

only the odometry, a first re-alignment step is done.

Once the robot’s poses have been realigned, a second

step is executed to obtain the global map and the globally

corrected pose sequence. The global mapping algorithm steps

are the following:
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Fig. 3. Global pose estimate at the end of the first detected loop. (red
points indicates the population set, and the observed measures before the
global pose correction. The blue ones are the observed measures after the
global pose correction and the green ones are the estimated measures in the
global pose estimate.

1) Index is initialized to 1, and the first scan is integrated

into the global map.

2) The following poses in the sequence are compared with

the current pose. If the distance between them is below

a given threshold or if there is an overlap between

current scan area and the global map, a potential cycle

exists. Otherwise, the next pose is explored until a

cycle is detected.

3) A global localization is started around this pose, and

the number of elements in the solution set is related to

the area to be explored.

• If the fitness value of the new pose estimate is

below an acceptance threshold, the new pose is

accepted.

• The accumulated residual error is distributed pro-

portionally between all poses along the cycle to

correct the accumulated error at the end of the

detected cycle.

• For all poses in the loop:

– The ELF algorithm is started, limiting its search

area to a small area around the corrected pose.

This time the global map is used. This readjusts

the estimate around the corrected pose and the

updated global map.

– With the corrected pose the new scan data of

the detected cycle are integrated into the global

map.

4) If no cycle is detected but the area has been previously

modelled, a re-localization is done, the error corrected

and the scan integrated in the global existent map.

5) Increment current pose and go to step 2.

VI. EXPERIMENTAL RESULTS

To demonstrate the algorithm, two different test environ-

ments have been used. The data for the first test environment

have been obtained from the Robotics Data Set Repository

(Radish) [7]. They are part of the Intel Jones Farms Campus

(Oregon) and were provided for M. Batalin (we thank him).

In Figure 3, the first cycle is detected in the mapping

process, the cycle starts in pose 44 and finishes in pose 149.

Figure 3 shows the pose at the end of the cycle, the new pose

estimate in the global data association, together with the laser

measures at original and re-estimated poses and the measures

prediction at re-estimated pose. After the accumulated error

is distributed between all poses included in the cycle and re-

estimated around this new position according to the global

map, the global data integration process in the global map is

done, and the result is shown in figure 4, together with the

next scan.
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Fig. 4. Global map after error attribution and data fusion at the end of the
first detected loop

Figure 5 shows the state of the global map after integrating

451 scans. Four cycle situations have been detected in

addition to the revisiting of previously crossed areas.

A second test has been done with data obtained from

experiments developed at our University laboratories, offices

and corridors. The test site is around 60 meters length. The

data scans have been obtained each 80cm approximately

using a stop and go method. In this test example there are

no cycles present, but there is a high degree of symmetry.

Figure 6 shows the global map up to motion 104.

An interesting aspect of the algorithm is the low number

of pose solutions required in the population to achieve satis-

factory results. A more detailed consideration of the accuracy

and convergence properties of the localization algorithm can

be found in [6].

The complexity of the ELF algorithm is O(N.M), where

N is the population size and M is the iteration number.
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Fig. 5. Global map after 451 scans fusion in environment test 1
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Fig. 6. Global map after 103 scans fusion in environment test 2

In spite of this complexity appearing to be substantial, in

practical terms it is very moderate. This is because only in

the case of a loop detection is the global data association

started, and in case of local correction, the population set is

very low.

The initial realignment done left an estimated residual

error lower than 0.25 degrees in orientation and lower than 1
centimeter in position (on average). This error is eliminated

in the global data association process.

VII. CONCLUSION

The differential evolution-based solution to the grid-based

SLAM problem presented introduces a new possibility to

accurately solve the SLAM problem. At a local scale, the

ELF localization algorithm provides a fast and accurate

maximum likelihood estimate with results equivalent to other

re-localization methods like scan matching approaches. And

at a global scale, the algorithm only incurs substantial cost at

cycle closing detection time and the cost increases linearly

with the number of poses included in the detected loop,

remaining constant for the re-localization and integration

of the scans in the global map which is lower than half

second second for the re-location and the mapping of the

scan data into the map. The low computational cost allows

online operation even in relatively large areas.

The search for this solution is done stochastically, employ-

ing an evolutive search technique. The algorithm has been

tested with data acquired with different robots equipped with

laser range scanners. Tests performed with our algorithm

have demonstrated the algorithm’s robustness and accuracy

generating maps.

The method can accommodate arbitrary non-linear system

dynamics, sensor characteristics and non-Gaussian noise,

avoiding unnecessary linearizations. It does not require any

assumptions about the shape of the posterior density, unlike

parametric approaches and due to the stochastic nature of

the algorithm search of the best robot pose estimate, the

algorithm is able to cope with a high level of sensor noise

with low degradation of the estimation results.

The delayed mapping in case of loops eliminates the

necessity of maintaining multiple maps or re-mapping each

time a significant global error is detected.
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[6] Moreno, L., Garrido, S, and Muñoz, M.L., Evolutionary filter for robust
mobile robot global localization, in: Robotics and Autonomous Systems,
54, pp 590-600, 2006.

[7] Batalin, M., The Robotics Data Set Repository (Radish), in:
http://radish.sourceforge.net.

[8] Smith, R., Self, M., and Cheeseman, P., Estimating uncertain spatial
relationships in robotics, in: I. Cox and G. Wilfong (Eds.), Autonomous
Robots Vehicles, pp 167-193, Springer-Verlag, 1990.

[9] Storn, R. and Price, K., Differential Evolution- A simple and efficient
adaptive heuristic for global optimization over continuous spaces, in :
Journal of Global Optimization, 11, pp 341-359 , 1997.

[10] Tardos, J., Neira, J., Newman, P., and Leonard, J., Robust mapping
and localization in indoor environments using sonar data, in: Int. Jou.
Robotics Research, 21 (4), pp 311-330, 200.

[11] Thrun, S., Simultaneous mpping and localization with sparse extended
information filters: theory and initial results. in: CMU-CS-02-112, 2002.

[12] Thrun, S., Burgard, W. and Fox, D., in: Probabilistic Robotics, The
MIT Press, 2005.

[13] Williams, S., Dissanayake, G. and Durrant-Whyte, H., An efficient
approach to the simultaneous localization and mapping problem, in:
Proc. of IEEE Int. Conf on Robotics and Automation ICRA-02, pp 406-
411, 2002.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


